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Abstract:
Objective: Based on stress theory, this paper proposes a fresh explanation of Radial Artery Spasm (RAS), the nature 
of which remains unclear.(1)
Data Sources: Published research papers accessed via PubMed
Study Selection: Abstract review
Data Extraction: Computerized Internet Search
Data Synthesis: Fresh information relevant to stress theory derived from unrelated research enabled the description of 
a testable “mammalian stress mechanism” (MSM) that explains the stress theory proposed by Hans Selye. 
Conclusions: MSM activity explains the nature of RAS.
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Introduction

Radial artery spasm (RAS) occurs after multiple unsuccessful 
attempts to cannulate the radial artery using small, short cath-
eters for monitoring and blood sampling, where upon the radi-
al pulse becomes impalpable and cannulation becomes futile. 
Persisting ulnar circulation presumably prevents ischemia, and 
the artery recovers if left unmolested, but sometimes hours after 
successful cannulation the pulse wave degenerates and the pulse 
becomes impalpable as far proximal as the elbow, particularly 
in the presence of pathology. Diverse treatments relieve RAS 
including radial nerve blockade, sympathetic ganglion blockade, 
warming the extremity, aspirating thrombus from the catheter 
tip, and flushing the artery with local analgesics, vasodilators, 
and anticoagulants[1,2]. 
 Interventional radiologists have embraced the RAS ac-
ronym to explain the “entrapment syndrome” that occurs after 
the installation of larger and longer angioplasty catheters via 
the radial artery, causing painful arterial damage in accord with 
larger catheters and lesser arterial diameter. RAS can also pre-
vent catheter insertion. Angioplasty RAS is routinely relieved by 
flushing the artery with heparin or cocktails of nitroglycerin and 
verapamil that lack neuromuscular effects[3]. 
 As its name implies, RAS is attributed to neuromuscular 
vasospasm. This seems reasonable because arteries visibly spasm 
during angioplasty and surgery; sympathetic blockade relieves 
RAS; and medical physiology presumes that opposing forces 
of cardiac contractility and muscular vasoconstriction governs 
blood flow[4]. However, muscular spasm offers a weak expla-
nation of RAS, because intense muscle contraction rapidly de-
pletes ATP, causing obligatory muscle exhaustion and relaxation. 

 Like other intracellular activities, muscle contraction is 
energized by ATPase enzymes that require Ca+ and ATP[5]. The 
sarcoplasmic reticulum releases Ca+ into myocyte cytoplasm 
to initiate contraction. ATPase then energizes the movement of 
fibrillar actin strands relative to adjacent myosin strands via a 
“ratcheting mechanism” to contract the muscle[6,7]. A calcium 
pump mechanism removes Ca+ from the cytoplasm and seques-
ters it within the sarcoplasmic reticulum to release the ratcheting 
mechanism, halt ATPase activity, and enable muscular relax-
ation. ATP depletion accordingly under mines muscle contrac-
tion. 
 The mitochondrial Krebs Cycle efficiently generates 
ATP in eukaryotic animal cells, but this necessitates oxygen and 
glucose, so that ATP generation is limited by tissue perfusion and 
oxygenation. This is readily observed during intense exercise, 
where cellular oxygen starvation causes skeletal muscle cells to 
revert to inefficient anaerobic ATP generation, causing muscle 
fatigue. Exercise conditioning induces angiogenesis (capillary 
proliferation) in muscle tissues that enhances oxygen delivery, 
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increases ATP generation, and improves exercise tolerance, but 
only up to a point[8-11]. 
 Unlike skeletal muscle, vascular smooth muscle con-
tracts slowly and enjoys close proximity to oxygenated blood, 
but its function nevertheless remains dependent on ATP gener-
ation. This is illustrated by Rigor Mortis, where the circulatory 
failure of death disrupts oxygen transport and delivery, causing 
cellular anoxia that halts ATP generation by the Krebs Cycle, so 
that universal muscle flaccidity ensues in the immediate after-
math of death, including vascular smooth muscle. The resilience 
of the calcium pump prevents rigor mortis in life. Anaerobic me-
tabolism generates enough ATP to sustain the calcium pump for 
a few hours after death, but as the failing sarcoplasmic reticulum 
releases its calcium into the cytoplasm, the ratcheting mecha-
nism locks in place for lack of ATP, causing rigor mortis in all 
types of muscle, including vascular smooth muscle.
 Muscular spasm fails to explain why anticoagulants, 
which lack neuromuscular effects, can successfully prevent and 
relieve RAS, or why the incidence of RAS is exaggerated by 
seemingly unrelated diseases including congestive heart failure, 
hypertension, diabetes, obesity, and cancer. 
 Ultrasound detects thrombus in RAS; thrombus aspira-
tion restores monitoring catheter function; and flushing the ar-
tery with anticoagulants prevents and relieves angioplasty RAS. 
These observations suggest that thrombus formation causes the 
RAS phenomenon, but this explanation is frustrated for lack of 
an effective hemostasis explanation. Such, however, may no 
longer be the case, because the recently discovered mammalian 
stress mechanism clarifies the nature of coagulation and its rela-
tionships with nervous activity, tissue repair, and disease[12-17]. 

Methods

The author’s curiosity about the recently discovered chimeric 
nature of coagulation factor VIII inspired a six-year review of 
published research via the Internet using advanced computer 
techniques.  Factor VIII consists of enzymatically inert von Wil-
lebrand factor (VWF) and enzymatic factor VIIIC. The vascu-
lar endothelium manufactures VWF and releases it into blood 
circulation under nervous control, while VIIIC is continuously 
released by the liver. The two gigantic molecules bind togeth-
er in blood circulation and exert their effects in concert. VWF 
stabilizes VIIIC and enables its enzymatic effects, which are 
otherwise so labile as to be nonexistent. Thus the factor VIII 
chimera links nervous activity to blood enzyme activity.  Defects 
in VIIIC cause true hemophilia, a severe, sex-linked clotting di-
athesis. Defective VWF causes the von Willebrand coagulation 
diathesis, which is usually mild but in severe forms can mimic 
true hemophilia. VWF defects also cause angiodysplasia, be-
cause the VWF molecule maintains capillary structural integ-
rity[18-24]. Theunique characteristics of factor VIII served as a 
“Rosetta Stone” that deciphered the relationships between and 
among coagulation enzymes, nervous activity, coagulation, cap-
illary hemostasis, atherosclerosis, bleeding diatheses, sickle cell 
anemia, angiodysplasia, angioneurotic edema, hemodynamic 
physiology, tissue repair, disease, and stress[25-30]. 

Results

The literature review successively identified testable mecha-

nisms of coagulation[12,14], capillary hemostasis[15], atherosclero-
sis[31,32], tissue repair[34], inflammation, apoptosis[15], the surgical 
stress syndrome[35], anesthesia, analgesia, allostasis[35,36] and a 
capillary gate mechanism that explains hemodynamic physiol-
ogy[13]. These seemingly disparate mechanisms were ultimate-
ly comprehended as elements of the long-sought “mammalian 
stress mechanism” (MSM) postulated by Hans Selye[16,16,37-43]. 
The MSM is testable, and it enables Selye’s revolutionary “uni-
fied theory of medicine”[42]  that explains physiology, pathology, 
stress, and their relationships.
 In retrospect, Selye was ahead of his time, like Jules 
Verne predicting trips to the moon before rockets were invent-
ed. He was an endocrinologist, and HPA hormone elevations 
and gross organ effects were the only recognized reactions to 
stress in his time[43,44]. The intense international 30 year search 
for his putative mechanism that followed the discovery of DNA 
focused on hormones and failed to find the coagulation infor-
mation needed to identify the elusive mechanism. However, 
the stress researchers were closer to success than they realized. 
They developed capillary gate theory and tissue repair theory 
to facilitate their search, and these hypotheses are embodied in 
the MSM. Another 30 years of fresh information from unrelated 
research was needed. Selye would have been surprised to learn 
that coagulation enzymes are the focus of his theory, that von 
Willebrand factor (VWF) is the prototypical stress hormone, and 
that his mechanism confers a unified theory of biology that ex-
ceeds the bounds of medicine. These implications will be elabo-
rated in an upcoming book that is in the hands of its publisher.

This presentation will briefly review the MSM and its operation, 
which explains the nature of RAS. 

The Mammalian Stress Mechanism (MSM)
The mammalian stress mechanism (figure 2) is analogous to the 
familiar coagulation cascade (figure 1), but it incorporates recent 
research that explains its relationships to nervous activity and 
tissue repair. It appears during the early stages of embryological 
development, and it converts chromosomal genetic information 
into cell specialization and cell organization that creates com-
plex multicellular anatomical structures. It remains continuously 
active for the duration of life to regulate hemodynamic physiol-
ogy, maintain the “internal milieu” that optimizes cell surviv-
al and function[45], and maintain mature structures. Meanwhile, 
DNA resumes quiescence once embryological development is 
complete. Stress-induced MSM hyperactivity causes disease 
manifestations, and explains the relationships of diseases and 
stresses. For example, it explains why diabetes, hypertension, 
obesity, malignancy, and congestive heart failure are closely 
associated, and why seemingly disparate diseases commonly 
manifest fever, inflammation, edema, cachexia, and malaise. It 
explains the relationships of hemodynamic physiology, coagula-
tion, atherosclerosis, tissue maintenance, and tissue repair, and 
thereby confers a fresh, simplified explanation of the puzzling 
RAS phenomenon[16,17,34]. 
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Figure 1: The Coagulation Cascade was described in the early 1960’s. 
It explains coagulation as a “cascade” of enzymatic interactions that 
produces insoluble fibrin, but it fails to explain how the cascade is ini-
tiated, regulated, and concluded. It assumes that the sole purpose of 
coagulation is hemostasis. Conventional “vasoconstriction” theory fails 
to explain capillary hemostasis, because capillaries lack the ability to 
contract. The cascade consists of an “intrinsic pathway” consisting of 
factors VIII and IX, and an “extrinsic pathway” consisting of factor 
VII and tissue factor. Both pathways interact with factor X in a “final 
common pathway” to generate thrombin, soluble fibrin, and insoluble 
fibrin. By Joe D - Own work, CC BY-SA 3.0,https://commons.wikime-
dia.org/w/index.php?curid=1983833

Figure 2: A simplified diagram of the “Mammalian Stress Mechanism” 
(MSM).
The MSM is analogous to the coagulation cascade, but it incorporates 
recent research that clarifies the relationships of stress, nervous activity, 
tissue disruption, tissue repair, hemostasis, and hemodynamic physi-
ology.  Sympathetic tone releases VWF from the vascular endotheli-
um to activate the “capillary gate component” of the MSM, shown in 
red, which is analogous to the “intrinsic pathway” of the coagulation 
cascade. Parasympathetic tone, shown in green releases nitric oxide 
(NO) from the vascular endothelium to open the capillary gate. Tissue 
damage activates the “tissue disruption pathway,” shown in blue that 
is analogous to the “extrinsic pathway” of the coagulation cascade, to 
enable tissue repair. 

The Three Products of the MSM
Combinations of nervous activity and tissue disruption alter 
the enzymatic interaction of factors VII, VIII, IX and X to reg-
ulate the magnitude, location, and speed of production of the 
three MSM products, which are thrombin, soluble fibrin, and 
insoluble fibrin. This focuses MSM activity to regulate hemody-
namic physiology, hemostasis, and tissue repair.  Stress induces 
MSM hyperactivity that produces these three products in excess, 
which manifests as disease. The constantly fluctuating levels of 
the three products producesa bewildering blizzard of symptoms 
and manifestations that belie the relative simplicity of MSM op-
eration.

Thrombin is the “universal enzyme of extracellular energy trans-
duction.” Like intracellular ATPase enzymes, it requires Ca+ 
and ATP, and it transforms ATP energy into action[46-58]. 

 Thrombin is generated when tissue factor, or TF (a 
glycoprotein in extravascular tissues), and Factor VII (a blood 
enzyme) meet in the presence of prothrombin. The selectively 
permeable vascular endothelium allows small quantities of TF 
to “leak” into blood circulation, and it allows small quantities of 
factor VII to “penetrate” into extravascular tissues. This gener-
ates small quantities of thrombin throughout the body (from its 
precursor, prothrombin). This “background” thrombin genera-
tion energizes ongoing tissue maintenance and a capillary gate 
mechanism regulated by autonomic balance that governs hemo-
dynamic physiology[59,60]. 
 When trauma disrupts the vascular endothelium (even 
minor damage at the capillary level), the MSM accelerates 
thrombin generation in those damaged tissues to energize hemo-
stasis[61]. The MSM then maintains thrombin elevations within 
an optimal range to energize cellular tissue repair activities. It 
reduces thrombin generation to maintenance levels in healing 
tissues as the repair process nears completion, causing clot disin-
tegration and apoptosis that shrinks granulation tissues to enable 
wound closure[62,63]. 
 Parathyroid glands regulate extracellular Ca+ within a 
narrow range that optimizes thrombin activity[24,64-77]. Drugs and 
chemicals that elevate Ca+ levels exaggerate thrombin genera-
tion, and vice-versa. Mg+ competitively inhibits Ca+ and mit-
igates thrombin generation[27,64,78-94]. Magnesium sulfate is used 
to treat eclampsia, a treatment readily explained by its thrombin 
inhibition.
 Thrombin is essential for embryological development, 
tissue maintenance, tissue repair and for malignancy. Pharma-
ceutical effects and enzyme defects that inhibit thrombin gen-
eration also disrupt embryological development, tissue mainte-
nance, tissue repair, and malignancy.
 All cells thus far tested have PAR (thrombin receptors) 
on their outer surface that determine how they react to thrombin 
elevations. Four different types of PAR have been discovered. 
Individual cell types have characteristic PAR types and numbers 
that determine how the cell reacts to thrombin elevations. Like 
sails on tiny ships, these can be reconfigured by the cell to alter 
cell reactions to thrombin during embryological development, 
tissue repair, and malignancy[57,62,63,95-102]. 
 Ordinarily thrombin elevations energize cellular ac-
tivities and inhibit apoptosis while thrombin starvation initiates 
apoptosis in fibroblasts, but cells react to thrombin differently at 
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different times and in different contexts. Thrombin can energize 
apoptosis, inhibit apoptosis, or be toxic to the cell. Additional 
research is needed to clarify thrombin effects, as present under-
standing relies on invitro studies that may not apply to living 
organism.

The following thrombin effects of thrombin reflect its universal 
role in extracellular ATP energy utilization. 
• Chemotaxis of platelets, osteocytes, white blood cells, and oth-
er tissue repair cells[69,103-105] 
• Mitosis[59,69,102,106] 
• Metabolism[69] 
• Hypertrophy[69,105,107-110] 
• Angiogenesis[47,111,112] 
• Platelet activation, chemotaxis, and thromboxane release[46]

• Proliferation, spreading and gap formation in the vascular en-
dothelium[117,118] 
• Chemokine, cytokine, interleukin, bradykinins, caspase, and 
prostaglandin release[96,104,109,119-127] 
• Bone, muscle, collagen, and immune protein produc-
tion by osteocytes, myocytes, fibroblasts, and immune cel
ls[54,63,66,105,106,108,110,118,128-131,132,133-139]

• Conversion of fibrinogen to soluble fibrin[72]

• Conversion of fibrillar soluble fibrin to three-dimensional in-
soluble fibrin[61,71140-148]

• Stabilization of insoluble fibrin via “Thrombin-Activated Fi-
brinolysis Inhibitor” (TAFI) [145,149-152]

• Inflammation, which dissolves the “basement membrane” that 
binds cells in tight formation with one another and with the Vas-
cular Endothelium to facilitate chemotaxis[66,98]. 
• Astrocyte and glial cell proliferation in brain tissue[102].
• Gelsolin activation[153,154] 
• Complement activity[155] Complement cascade activity gener-
ates large amounts of thrombin.
• T-cell activation[99,133] 
• Blast transformation in lymphocytes[131,133] 
• Macrophage phagocytic activity[67,99,111,112,131,136,156] 
• Plasma (immune) cell and neutrophil activation[136,147,157] 
• “Tumor Necrosis Factor” release from microglial cells[158]

• Tumor growth, malignancy, and fibrosis[55,62,63,95,128,130,135,159,160,161]

• Inhibits apoptosis[57,95,100,101,162,163] 
• Intracellular gap formation in the vascular endothelium[117] 
• Defects in Factors VII, X and tissue factor lethally disrupt 
thrombin generation[164] 

 Soluble fibrin is the “universal protein of tissue repair.” 
Thrombin converts fibrinogen to soluble fibrin that appears in 
pus, exudates, scabs, scars, saliva, mucus, and milk[165,166]. It es-
capes the vascular system via inflammatory gaps in the vascular 
endothelium and infiltrates damaged tissues to promote fibro-
blast proliferation and collagen production that facilitates tissue 
repair[106,117,165]. Excessive insoluble fibrin causes tissue edema, 
organ dysfunction, fibrosis, and scar formation[139,167-178]. 
 Insoluble fibrin is the “universal polymer of hemosta-
sis.” Factor VIII accelerates thrombin generation to energize its 
enzymatic conversion of soluble fibrin into strands of insoluble 
fibrin that entangle blood cells, reduce pulsatile turbulence be-
low a threshold, and bind blood cells into a viscoelastic clot or 
thrombus[12,33,56]. In capillaries, insoluble fibrin exaggerates flow 

resistance to regulate hemodynamic physiology[13]. Excessive 
insoluble fibrin exaggerates blood viscosity and coagulability, 
which decreases cardiac output, tissue perfusion, and tissue ox-
ygenation, and invites infarction, thrombosis, embolism, and 
disseminated intravascular coagulation (DIC) [35]. Excessive in-
soluble fibrin generation exhausts clotting precursors[179,180]. 
 Insoluble fibrin incorporates cross-links of plasmino-
gen, which spontaneously degrades into plasmin that enzymat-
ically disintegrates insoluble fibrin into “fibrin split products.” 
Thrombin-activated fibrinolysis inhibitor (TAFI) stabilizes plas-
minogen and preserves insoluble fibrin[145,149-152]. 

The Interaction of factors VII, VIII, IX, and X
Hepatic enzyme factors IX and X have prolonged half-lives and 
circulate at stable levels, but factors VII and VIIIC are labile, so 
that their fluctuating enzymatic activities alter the enzymatic in-
teraction and determine the rate, magnitude, location and speed 
of production of thrombin, soluble fibrin, and insoluble fibrin.

Factor IX enhances factor VIII activity but lacks other effects.

Factor VIII links nervous activity to blood enzymes. It is a gi-
gantic chimeric molecular complex consisting of continuously 
released hepatic enzyme factor VIIIC and von Willebrand fac-
tor (VWF) that is produced by the vascular endothelium and re-
leased into blood in accord with sympathetic activity[29]. These 
seemingly unrelated molecules bind together in blood circulation 
and exert their effects in concert, so that factor VIII fluctuates in 
accord with nervous activity, including emotion[26,29,181-183]. Fac-
tor VIII interacts with factors IX and X to generate factor XIII 
that adds “cross links” of fibronectin, vitronectin and plasmino-
gen to molecular strands of soluble fibrin to generate insoluble 
fibrin in capillaries and flowing blood. 
 Factor VII links tissue damage to blood enzymes. Tis-
sue damage disrupts the vascular endothelium and exposes fac-
tor VII to tissue factor in extravascular tissues[184]. Tissue fac-
tor stabilizes labile factor VII, where upon it generates small 
amounts of thrombin that enable the activities of factors VIII, 
IX, and X. Factor VII thus functions as a “trigger” that initiates 
and localizes the enzymatic interaction.
 The pivotal activities of factor X have yet to be fully 
elucidated. It interacts with factor VII and tissue factor to enable 
embryological development and tissue repair, and it interacts 
with factor VIIIC and VWF (factor VIII) to generate insoluble 
fibrin that enables hemostasis and capillary gate function.

The Vascular Endothelium
The vascular endothelium is a diaphanous layer of cells, one cell 
thick, that lines the inner surface of blood vessels and is the sole 
substance of capillaries. It regulates the enzymatic interaction 
of factors VII, VIII, IX and X to govern the rate, magnitude, 
and location of the production of thrombin, soluble fibrin, and 
insoluble fibrin.
 The vascular endothelium insulates blood enzymes 
from tissue factor in extravascular tissues. Its traumatic disrup-
tion exposes tissue factor to blood enzymes and initiates coag-
ulation and tissue repair. Harmful radiation and toxic chemicals 
increase its permeability to factors VII, X and tissue factor, 
which causes painful inflammation but does not induce coagula-
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tion because the intact vascular endothelium remains imperme-
able to gigantic factor VIII. Abundant tissue factor exaggerates 
coagulability and malignancy in brain, nerves, lung, gonads, ar-
teries, cervix, and placenta[184]. 
 The vascular endothelium is “selectively permeable.” It 
allows the continuous “penetration” of factor VII from flowing 
blood into extravascular tissues, which generates small amounts 
of thrombin that energize tissue maintenance. It allows the con-
tinuous “leakage” of tissue factor into flowing blood, which en-
ables the continuous “background” activity of factors VII, VIII, 
IX and X. 
 The cells of the vascular endothelium react to local fac-
tors and communicate with one another via electromagnetic sig-
nals[185]. They release VWF in accord with sympathetic tone to 
generate insoluble fibrin[26,186-190]. They release nitric oxide (NO) 
in accord with parasympathetic tone to disintegrate insoluble fi-
brin (nitrergic neurogenic vasodilation) [189,191-195]. 

The Tissue Disruption Pathway
The tissue disruption pathway is analogous to the extrinsic path-
way of the coagulation cascade. Tissue damage disrupts the 
ubiquitous vascular endothelium, exposes tissue factor to blood 
enzymes, and triggers an intense enzymatic interaction of factors 
VII, VIII, IX and X that activates platelets, releases thrombox-
ane, and generates strands of insoluble fibrin that entangle blood 
cells, reduce pulsatile blood turbulence below a threshold, and 
bind blood cells into a viscoelastic clot that restores the isolation 
of damaged tissues from flowing blood[12]. 

The Tissue Repair Mechanism
Due to its gigantic size, factor VIII cannot penetrate the clot of 
its own manufacture, and factor IX interacts only with factor 
VIII, so that clot formation is limited to the vicinity of tissue 
damage. The selectively permeable viscoelastic clots regulates 
the penetration of factors VII and X into damaged tissues, where 
they interact with tissue factor to generate thrombin that energiz-
es inflammatory gaps between the cells of the vascular endothe-
lium that increase its permeability. Thrombin energized inflam-
mation loosens cell connections to facilitate thrombin energized 
chemotaxis of repair cells that move from adjacent undamaged 
into damaged tissues, where they engage in thrombin energized 
tissue repair. Thrombin-generated soluble fibrin escapes the vas-
cular system through thrombin inflamed tissues to enter dam-
aged tissues, where it facilitates thrombin energized fibroblast 
proliferation and collagen production that fills empty spaces. 
Thrombin energized immune activity fights infection and re-
moves debris. Thrombin energized cell differentiation replaces 
damaged bone and tissues. Thrombin generation declines as tis-
sue repair restores the vascular endothelium, and thrombin star-
vation induces clot disintegration and repair cell apoptosis that 
draws wound edges together to conclude the repair process[95]. 

The Capillary Gate Pathway
The capillary gate pathway is analogous to the intrinsic pathway 
of the coagulation cascade. Nervous activity releases von Wille-
brand factor (VWF) from the vascular endothelium into flowing 
blood to stabilize VIIIC and generate insoluble fibrin that in-
creases blood viscosity and coagulability.

The Capillary Gate Mechanism
Capillary surface area is vastly greater than that of all larger ves-
sels combined, and turbulence, flow rates and pressures are min-
imal at the capillary level. The capillary gate pathway regulates 
a submicroscopic “capillary gate mechanism” that governs cap-
illary flow, capillary hemostasis, systemic vascular resistance, 
tissue perfusion, organ function, cardiac output, cardiac efficien-
cy, blood pressure, and pulse rate. Autonomic balance and CO2 
tissue accumulation regulate the capillary gate mechanism[196]. 
 Sympathetic activity extrudes VWF from the inner 
walls of capillaries, next to binding sites for fibrinogen and fi-
bronectin. Factor VIIIC binds to VWF and accelerates thrombin 
generation to convert fibrinogen to strands of soluble fibrin. Fac-
tor VIII then converts factor X to factor XIII that adds “cross-
links” of plasminogen and fibronectin to molecular strands to 
soluble fibrin to generate insoluble fibrin that polymerizes into 
strands that “close” the capillary gate by increasing capillary 
flow resistance[73,180]. Plasminogen spontaneously degenerates 
into plasmin that enzymatically disintegrates insoluble fibrin 
into “fibrin split products” unless plasminogen is continuous-
ly stabilized by “thrombin-activated plasminogen inhibitor” 
(TAFI).Parasympathetic activity releases nitric oxide (NO) from 
the vascular endothelium[189,191-195]. NO is a gaseous molecule 
that diffuses into the capillary lumen and binds to Ca+, which 
inactivates thrombin, accelerates the disintegration of insoluble 
fibrin, and “opens” the capillary gate (aka “nitrergic neurogenic 
vasodilation”). 
 The opposing effects of epinephrine and insulin extend 
autonomic balance to peripheral tissues where direct autonomic 
innervation is lacking. Sympathetic activity releases epinephrine 
from the adrenal glands, which releases VWF from the vascular 
endothelium, increases factor VIII activity, and generates insol-
uble fibrin[197]. Parasympathetic activity releases insulin from the 
pancreas, which releases NO from the vascular endothelium, 
which accelerates insoluble fibrin disintegration[198]. 

The Turbulence Mechanism
Familiar fluids such as water, oil, steam, and atmospheric gases 
are classified as “Newtonian” because they exhibit exponential 
increases in turbulent flow resistance when they are accelerated 
in pipes[199]. (see figure 3) In contrast, blood is a “non-Newto-
nian” fluid that exhibits exponential decreases in flow resistance 
when it is accelerated in arteries. This is because mammalian 
red cells spontaneously form “aggregates” during blood accel-
eration that inhibit turbulent flow resistance, which enables the 
heart to efficiently eject its contents in less than a tenth of a sec-
ond[200]. The muscular arterial tree expands to accommodate car-
diac ejection volume, and then functions as a “secondary heart” 
that propels blood toward capillary beds as it restores resting 
volume. However, blood flow momentarily reverses direction in 
the aorta at the outset of diastole, which closes the aortic valve. 
The reduced diameter of the distal aorta amplifies the momen-
tary flow reversal, disrupts the aggregate patterns, and produces 
a burst of diastolic pulsatile turbulence that momentarily halts 
blood flow as it propagates toward the periphery of the arterial 
tree. Laminar blood flow resumes in the wake of the pulse wave. 
The pulsatile turbulence generates lateral forces that press on 
the inner walls of arteries. This explains blood pressure and the 
palpable pulse. The turbulence maintains arterial patency by dis-
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integrating thromboses and mobilizing particulate deposits from 
the inner walls of arteries that would otherwise induce localized 
inflammation and tissue repair activities that cause atheroma 
formation.  Decreasing arterial diameter exaggerates turbulence, 

which explains why atherosclerosis and thrombosis are rare in 
distal extremities[12,31,32]. 

Figure 3: Newtonian Pipe Flow Turbulence.(199) Turbulent forward 
flow appears as fast-moving “jet streams” (shown in red) that form 
along the inner walls of pipes and force slow-moving fluid to the center, 
where it moves backwards (shown in blue), causing increased viscosity 
(flow resistance). A, C and E are laser photographs that reflect flow ac-
celeration that exaggerates turbulent intensity. B, D and F are computer 
simulations. Similar diastolic turbulence inhibits atherosclerosis by mo-
bilizing particulate deposits from the inner walls of arteries. Diastolic 
turbulence also generates lateral forces that explain blood pressure and 
the palpable pulse. The study of Hof et al has revolutionized the un-
derstanding of pipe flow turbulence and viscosity and refuted several 
older concepts that attempted to explain the manifestations of fluid flow 
in pipes and arteries. This includes systemic blood pressure (BP), pul-
monary artery pressure (PAP), Pulmonary Vascular Resistance (PVR), 
the Hagen-Poiseuille Equation, Mean Arterial Pressure (MAP), Shear 
Stress, and Reynolds Numbers.  (Reproduced with permission Science).

Accelerated Capillary Senescence
Capillary gate activity regulates tissue perfusion, but does not 
normally cause tissue oxygen starvation, as evidenced the by 
the rarity of infarction in youth. However, inexorable capillary 
deterioration proceeds with senescence, which inexorably un-
dermines tissue perfusion and glucose uptake, exaggerates flow 
resistance that causes essential hypertension, harmfully increas-
es cardiac work that induces congestive heart failure, and alters 
pulsatile turbulence in favor of lateral forces at the expense of 
turbulent intensity that maintains arterial patency. Chronic stress, 
including toxic chemicals, smoking, fear, anxiety, obesity, and 
chronic illness, accelerates capillary senescence and promotes 
hypertension, diabetes, congestive heart failure, infarction, ec-
lampsia, and multi-organ system failure. I call this “accelerat-
ed capillary senescence[201-205].” Exercise conditioning mitigates 
capillary senescence by inducing angiogenesis[8-11,206,207]. 

Discussion
 
The MSM clarifies RAS, as follows:
Malignancy, obesity, smoking, emotional stress[181,183,208], hyper-
tension, and other illnesses induce MSM hyperactivity that ex-
aggerates blood viscosity and coagulability, accelerates capillary 

senescence, and promotes thrombus formation. Capillary senes-
cence exaggerates flow resistance, which undermines turbulent 
intensity, causes essential hypertension, promotes thrombus 
formation, accelerates atherosclerosis, c and exaggerates cardi-
ac work, which and causes congestive heart failure that further 
undermines pulsatile turbulent intensity. In reasonably healthy 
individuals, pulsatile blood turbulence maintains arterial paten-
cy in the aftermath of arterial cannula installation. However, 
co-existing disease inhibits turbulent intensity, which promotes 
thrombus formation and propagation that undermines the pulse 
wave and obstructs arterial flow hours later. This explains the 
close relationships of RAS and disease.
 Nerve blockade promotes spontaneous thrombus disin-
tegration by inhibiting sympathetic nervous activity that releases 
VWF from the vascular endothelium. 
 The unappreciated anticoagulant properties of local 
analgesics such as lidocaine[209-211], calcium channel blockers 
such as Verapamil, beta-blockers such as propranolol[212], furo-
semide[213], and other pharmaceuticals explains their ability to 
relieve RAS. 
 Multiple arterial piercings increase tissue factor ex-
posure and trigger thrombus formation that mimics spasm and 
obstructs arterial flow. Soon thereafter, pulsatile turbulence 
“tunnels” through the thrombus, restores arterial patency, and 
mimics spasm relief.
 Blood is ordinarily transparent to both X-rays and ul-
trasound, but pulsatile turbulence reflects the Doppler ultrasound 
signal, which facilitates cannula installation. Doppler ultrasound 
detects mature thrombus formation but cannot detect immature 
thrombus formation that nevertheless undermines the palpable 
pulse and blood flow.
 Angioplasty catheters disrupt the vascular endothelium 
along their entire length and cause far greater tissue factor expo-
sure than small monitoring catheters. This induces thrombus for-
mation along the length of the catheter in accord with small ar-
terial diameter, large catheter diameter, and catheter length. The 
viscoelastic thrombus is tough, sticky, and flexible, and it bonds 
to the catheter, causing entrapment. The entrapment eventually 
resolves as plasmin degrades the viscoelastic clot, but ensuing 
tissue repair activity causes permanent arterial damage. Antico-
agulant heparin, lidocaine, and verapamil infusions prevent and 
relieve catheter entrapment via hemolysis.
 Cold exaggerates blood viscosity and coagulability[214]. 
Warming the extremity reduces blood viscosity and coagulabil-
ity, accelerates thrombus disintegration, and restores the wave-
form. 
 Ultrasound releases NO from the vascular endotheli-
um, disrupts insoluble fibrin, disintegrates the thrombus, and 
restores the waveform[215-217]. 
 The MSM suggests simple, safe, inexpensive RAS 
treatments that can be synergistically combined. Ultrasound 
releases NO from the vascular endothelium and disintegrates 
insoluble fibrin. CO2 supplementation of inhaled gas mixtures 
opens the capillary gate and optimizes pulsatile turbulence in-
tensity. EDTA, trisodium citrate, and MgSO4 are more potent 
than heparin, and they can be readily reversed with Ca+. They 
are inexpensive, and they have excellent safety records when 
used for chelation, dialysis, eclampsia, and blood preservation.
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Conclusion

MSM activity here in does not refute spasm, but it offers an al-
ternative explanation of RAS that invites further investigation. It 
is possible that a combination of spasm and coagulation causes 
the confusing manifestations of RAS. On the other hand, the Ra-
zor of Occam suggests that the simplest explanation is the one 
most likely to be correct. The coagulation hypothesis is simpler 
because it potentially explains all aspects of the RAS phenom-
enon. 
 The implications of the MSM exceed the bounds of 
medicine. In addition to enabling Selye’s “unified theory of 
medicine” that explains physiology, pathology and stress, it 
confers a “unified theory of biology” that explains embryology, 
evolution, anatomy, ethology, intelligence, emotion, taxonomy, 
paleontology, dinosaurs, the Cambrian explosion, and the origin 
of life. It paves the path for understanding of the gene code, with 
implications that presently remain in the realm of science fiction. 
A book that discusses the extended medical and biological im-
plications of stress theory is in the hands of its publisher and will 
soon be announced via my website: www.stressmechanism.com.
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